

NLO Corrections to High Multiplicity Jet
Observables

● LO on Graphical Processor Units (GPU's)
● Defining Exclusive Multi-Jet observable at NLO
● NLO on GPU's

– Real Corrections on the GPU

– Virtual Corrections on the GPU

– Color Expansions on the GPU

● Numerics (timing only) and Outlook

1

W. Giele, G. Stavenga and J. Winter

Introduction
● Tree-level and one-loop amplitudes can nowadays be

calculated up to very high number of external legs

● To combine them in a NLO parton level MC we have to
integrate over phase space

● Throw large computer farms at the problem? Or

– “Redefine the observable”: Make the NLO jet phase
space identical to the LO jet phase space...

– Use new and affordable hardware so the MC can run on
your own PC again...

● We are pursuing these two options, such that NLO MC's with
many jets can run on a single CPU/GPU PC or a multiple
CPU/GPU board system...

● For now results are with gluons only and in Leading Color.

● The C1060 Nvidia Tesla GPU is a plug-in
card for your desktop.

● The Tesla chip is designed for numerical
applications and programmable in
C/limited C++.

● The chip has 30 multi-processors (MP's),
each with 1024 processors (threads).

● For us the limiting factor is the fast on-
chip shared memory of 16,384 32-bit
registers per MP (accessible by all
threads on the MP).

● (There is 4 Gb off-chip slow access
memory we use for I/O only.)

LO on GPU's: Hardware

arXiv:1002.3446 [hep-ph]
(vircol.fnal.gov/TESS.html)

$1300 from Amazon.com
Power: 200W @ peak preformance

LO on GPU's: Programming Principles
● All 30x1024=30,720 threads execute the same instructions (threads

can skip ahead and wait for other threads to catch-up using if
statements etc).

● Each thread has an unique number (for input/output etc)

● A MC generator is trivially parallelizable as the evaluation of each
event executes the same instructions using different input (e.g.
seeds for the random number generator or momenta).

● So, in principle we can run 30,720 MC generators in parallel, each
running N events (a speed up of 30,000!).

● However, fast accessible memory is limiting the number of parallel
events.

● Recursion relations perfect for GPU (memory efficient & algorithmic
simple). For GPU usage in diagrammatic calculations see
Hagiwara, Kanzaki, Okamura, Rainwater, Stelzer (arXiv:0909.5257 [hep-ph],
arXiv:0908.4403 [physics.comp-ph])

LO on GPU's: Memory usage

● The n-gluon recursion relation needs n momenta and n*(n-1)/2
currents for a total of n*(n+1)/2 single precision 4-vectors.

● This means we need (4*4)*n*(n+1)/2 bytes of fast accesible
memory per event.

● The means 16,384/(8*n*(n+1)) events per MP.

LO on GPU's: Timing AMD Phenom(tm) II X4
940 Processor (3 GHz)

LO on GPU's: Distributions

● Rambo generated events for 2g-->5g and 2g-->7g in large color
limit at 14 TeV (switching to e.g. Haag would dramatically
improve statistics).

● Cuts: Pt(jet)>60 GeV; |eta(jet)|<2; R(jet,jet)>0.4

7=6.356 12x105 pb 9=4.38 11x104 pb

N event=1.08x1011 N event=6.6x1010

3 hours on GPU
17 days on CPU

2.2 hours on GPU
15 days on CPU

Kleiss, Stirling, Ellis

Van Hameren, Papadopoulos:hep-ph/0204055

Exclusive Multi-Jet Final States at NLO

● We view perturbative jets as opaque (not as
one or two partons).

● That is, we integrate out all physics inside the
jet cones. This makes the perturbative
calculation valid (for appropriate jet cuts).

● The perturbative calculation estimates the
correlations between the different jet momenta.

● Making the jet transparent requires for example
a shower MC.

LO/NLO jet phase space
● By defining jets in such a way that the NLO and

LO jet phase space are identical we achieve:
– Implicit removal of many potential large logs

– Each exclusive jet final states have well defined
LO and NLO weight (all cancellations occur).

– Defines “matrix element methods” used by
experiments at NLO.

– Real radiation integral is now 2+1 dimensional.
We can go to very high multiplicity jet final
states.

● Price to pay is a small augmentation of jet
algorithm.

Defining LO/NLO jet phase space

● For final state jets the augmentation is minimal:
– Apply standard 2->1 clustering according to cut

measure R(p1,p2): Massive cluster p12=p1+p2

– Find recoiler p3 by minimizing R(p1,p2;p3)
(eg R(p1,p2;p3)=R(p1,p3)*R(p2,p3))

– Re-scale p12 and p3 such that p12 becomes
massless: p3=a*p3; p12=p12-a*p3 (a=s12/s123)

LO jet phase space

A jet observable is simply calculated from the exclusive jet
cross section:

The LO exclusive jet cross section is given by:

NLO jet phase space

The NLO exclusive jet cross section is now given by:

Only 2-dim integral,
independent of # of jets

● We now write the 2->3 brancher which is the exact
inverse of the jet algorithm.

● This allows us to MC over the real radiation phase
space for a fixed exclusive jet phase space point.

● Time consuming to evaluate virtual:
– Generate M jet-phase space points with LO weight

– Un-weight events to give N<<M events

– Calculate “K-factor” for un-weighted jet events
(should give weights around 1).

– (E.g. 100,000 LO un-weighted PP--> 12 jet events
requires 100,000 virtual evaluations,)

NLO jet phase space generator

Experimentalists
have this already

Jet Phase Space with Initial State Radiation
● Use crossing functions (--> beam jets).
● The beam jet axis is aligned with the beam

particles (not the integrated out internal partons).
● Simple augmentation to jet algorithm:

– Cluster as described before for final states,
including incoming parton.

– Sometimes partons are cluster with incoming
parton -> beam jet.

– Apply Pt-boost to final jet final state such they are
Pt-balanced.

– We now integrate out automatically the initial
state radiation!

Stewart, Tackmann, Waalewijn
arXiv:0910.0467 [hep-ph]

Giele, Glover, Kosower: hep-ph/9302225

(Resummation calculations live in this phase space
as it adds radiation in the opaque jet cones without

changing the jet kinematics)

NLO timing
Executed on a TESLA C1060 GPU, in
parallel with the CPU evaluation of virtual

Real diagram ~20x faster than LO diagrams!
(only 3 momenta change/branching).
Linear complexity algorithm for real events!!!

J. Winter and W. Giele
arXiv:0902.0094 [hep-ph]
On a AMD Phenom(tm) II X4
940 Processor (3 GHz)

Timing and virtual

● Time is 100% dominated by virtual
● A speed-up with a factor of ~1000 is desirable
● A factor of ~10 is trivially obtained (let GPU

calculate tree-level blobs)
● The next factor of 100 requires a modification in

the on-shell methods for GPU implementation
● This is in progress, final GPU implemented

virtual should be 100-1000 times faster.
● Current speed: e.g. ~20,000 PP--> 10 jets/day

Timing and Hardware

● Hardware:
– Farming with the S2050 GPU rack boards:

● We run at 16x the time from the table.
(~300,000 PP-->10 jets/day at NLO.)

– New chips come out regularly, the Fermi chip:
● has 4x more on-chip memory --> 4x more events

in the same time
● 7x double precision speed...
● Full c++ hardware support--> simplifies coding
● (almost) doubling # of cores --> 2x more events

– New chips will dramatically increase the
capabilities for many generations to come.

~2,000,000 pp->10 jets/day

Timing and Outlook

● Given the exclusive definition of jet observables and
GPU integration over real phase space we can go to
very high multiplicities, eg 2->12, within reasonable time
on a desktop (order of a day or two of running on a
GPU). Speeds will further increase dramatically in the
coming months/years...

● Next in the line:

– Virtual on the GPU (in progress)

– Color-dressed based color expansions on the GPU,
keeping polynomial complexity (in progress)

– Adding quarks in recursion (external and internal)

– Adding external vector bosons, Higgs,... in recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

